37) A manufacturer produces two models of bicycles. The times (in hours) required for assembling, painting, and packaging each model are as follows:

Process	Model A	Model B
Assembly	2	2.5
Painting	4	1
Packaging	$1 \boldsymbol{\chi}$	0.7 y

$$
\begin{aligned}
& x \geq 0 \quad y \geq 0 \\
& 2 x+\frac{5}{2} y \leq 4000 \\
& 4 x+y \leq 4800 \\
& x+\frac{3}{4} y \leq 1500
\end{aligned}
$$

$$
y=-\frac{4}{5} x+1600
$$

$$
2 x+\frac{5}{2} y \leq 4000 / \sin ^{y}=-4 x+4800
$$

The Total times available for assembling, painting, and packaging are 4000 hours, 4800 hours, and 1500 hours, respectively. The profits per unit are $\$ 45$ for model A and $\$ 50$ for model B. How many of each type should be produced to maximize profit?

objective: $P(x, y)=45 x+50_{y}$

41) A farming cooperative mixes two brands of cattle feed. Brand Mooby costs $\$ 25$ per bag and contains two units of protein, two units of carbs, and two units of silage. Brand MmmSteak costs $\$ 20$ per bag and contains 1 unit of protein, nine units of carbs, and three units of silage. Find the number of bags of each brand that should be mixed to produce a mixture having a minimum cost. The minimum requirements of protein carbs, and silage are 12, 36, and 24 units respectively.
Let $x=$ bags of Mooby
$x \geq 0$
$y=$ bags of Mmmsteak. $y \geq 0$
$C(x, y)=25 x+20 y \quad 2 x+1 y \geq 12$
$240=25(0)+20(12) \quad 2 x+9 y \geq 36-\frac{2}{9} x+4$ $19 \mathrm{~S}=25(3)+20(6)$

$$
2 x+3 y \geq 24 z
$$

$450=25(18)+20(0)$

